3.207 \(\int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=120 \[ \frac {7 a^{3/2} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}+\frac {7 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}} \]

[Out]

7/4*a^(3/2)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+1/2*a^2*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos
(d*x+c))^(1/2)+7/4*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.18, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2763, 21, 2770, 2774, 216} \[ \frac {a^2 \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d \sqrt {a \cos (c+d x)+a}}+\frac {7 a^{3/2} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{4 d}+\frac {7 a^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{4 d \sqrt {a \cos (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(7*a^(3/2)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/(4*d) + (7*a^2*Sqrt[Cos[c + d*x]]*Sin[c +
d*x])/(4*d*Sqrt[a + a*Cos[c + d*x]]) + (a^2*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*Sqrt[a + a*Cos[c + d*x]])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rule 2763

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n)), x] + Dist[1/(d*
(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d*(
m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m, 2*
n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2770

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-2*b*Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(2*n*(b*c + a*d)
)/(b*(2*n + 1)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]

Rule 2774

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2/f, Su
bst[Int[1/Sqrt[1 - x^2/a], x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]

Rubi steps

\begin {align*} \int \sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2} \, dx &=\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{2} \int \frac {\sqrt {\cos (c+d x)} \left (\frac {7 a^2}{2}+\frac {7}{2} a^2 \cos (c+d x)\right )}{\sqrt {a+a \cos (c+d x)}} \, dx\\ &=\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{4} (7 a) \int \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \, dx\\ &=\frac {7 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}+\frac {1}{8} (7 a) \int \frac {\sqrt {a+a \cos (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {7 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}-\frac {(7 a) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-\frac {x^2}{a}}} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}\\ &=\frac {7 a^{3/2} \sin ^{-1}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {7 a^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a^2 \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d \sqrt {a+a \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.23, size = 92, normalized size = 0.77 \[ \frac {a \sec \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\cos (c+d x)+1)} \left (7 \sqrt {2} \sin ^{-1}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \left (6 \sin \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {3}{2} (c+d x)\right )\right ) \sqrt {\cos (c+d x)}\right )}{8 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2),x]

[Out]

(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(7*Sqrt[2]*ArcSin[Sqrt[2]*Sin[(c + d*x)/2]] + 2*Sqrt[Cos[c + d*
x]]*(6*Sin[(c + d*x)/2] + Sin[(3*(c + d*x))/2])))/(8*d)

________________________________________________________________________________________

fricas [A]  time = 1.05, size = 103, normalized size = 0.86 \[ \frac {{\left (2 \, a \cos \left (d x + c\right ) + 7 \, a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, {\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/4*((2*a*cos(d*x + c) + 7*a)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) - 7*(a*cos(d*x + c) + a
)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.17, size = 160, normalized size = 1.33 \[ -\frac {\left (-1+\cos \left (d x +c \right )\right ) \left (2 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+7 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+7 \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}{\cos \left (d x +c \right )}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) a}{4 d \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x)

[Out]

-1/4/d*(-1+cos(d*x+c))*(2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)*sin(d*x+c)+7*(cos(d*x+c)/(1+cos(d*x+c))
)^(1/2)*sin(d*x+c)+7*arctan(sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/cos(d*x+c)))*(a*(1+cos(d*x+c)))^(1/2)
*cos(d*x+c)^(1/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)/sin(d*x+c)^2*a

________________________________________________________________________________________

maxima [B]  time = 1.91, size = 1080, normalized size = 9.00 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/16*(2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*((a*cos(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c)))*sin(2*d*x + 2*c) + a*sin(2*d*x + 2*c) - (a*cos(2*d*x + 2*c) - 6*a)*sin(1/2*arctan2
(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + (a*sin(2*d*x
 + 2*c)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - a*cos(2*d*x + 2*c) + (a*cos(2*d*x + 2*c) - 6*a)
*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 6*a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c
) + 1)))*sqrt(a) + 7*(a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(
1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - co
s(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))),
(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), co
s(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c),
cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))) + 1) - a*arctan2((cos(2*d*x + 2*c
)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)
 + 1))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos
(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*cos(1/2*arctan2(sin(2*d*x +
 2*c), cos(2*d*x + 2*c))) + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin(1/2*arctan2(sin(2*d*x
 + 2*c), cos(2*d*x + 2*c)))) - 1) - a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2
*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x
 + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*
d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1))*sqrt(a))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(3/2),x)

[Out]

int(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(1/2)*(a+a*cos(d*x+c))**(3/2),x)

[Out]

Integral((a*(cos(c + d*x) + 1))**(3/2)*sqrt(cos(c + d*x)), x)

________________________________________________________________________________________